Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yong-Hong Wen, Shu-Sheng Zhang,* Mao-Jie Li and Xue-Mei Li

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.002 Å R factor = 0.042 wR factor = 0.122 Data-to-parameter ratio = 13.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N'-(2-Fluorobenzylidene)-2-(quinolin-8-yloxy)acetohydrazide methanol solvate

In the title compound, $C_{18}H_{14}FN_3O_2 \cdot CH_4O$, all bond lengths and angles are within normal ranges. The $C_{18}H_{14}FN_3O_2$ molecule is essentially planar, with a dihedral angle of 7.83 (7)° between the planes of the benzene ring and the quinoline group. Each methanol molecule is linked to one $C_{18}H_{14}FN_3O_2$ molecule *via* intermolecular N-H···O, O-H···O and O-H···N hydrogen bonds. Received 23 May 2005 Accepted 3 June 2005 Online 10 June 2005

Comment

As part of our ongoing search for good extractants of metal ions or a biologically active material, the title compound, (I), was obtained in the reaction of quinolin-8-yloxyacetic acid hydrazide and 2-fluorobenzaldehyde. We report here the crystal structure of (I).

The bond lengths and angles in (I) (Table 1) are within normal ranges (Allen *et al.*, 1987), and are comparable to those in the related compound *N*,*N*-diphenyl-2-(quinolin-8yloxy)acetamide monohydrate (Wen *et al.*, 2005). The $C_{18}H_{14}FN_3O_2$ molecule is essentially planar, with a dihedral angle of 7.83 (7)° between the planes of the benzene ring and the quinoline group. The intramolecular N2–H2A···O1 hydrogen bond, forming a five-membered ring, contributes to the planarity of the title molecule. Each methanol molecule is linked to one $C_{18}H_{14}FN_3O_2$ molecule *via* intermolecular N– H···O, O-H···O and O–H···N hydrogen bonds (Table 2 and Fig. 2).

Experimental

Quinolin-8-yloxyacetic acid hydrazide (2.18 g, 10 mmol), 2-fluorobenzaldehyde (1.30 g, 10.5 mmol), ethanol (40 ml) and some drops of acetic acid were added to a 100 ml flask, and refluxed for 3 h. After cooling to room temperature, the mixture was filtered. Colourless single crystals suitable for X-ray diffraction study were obtained by slow evaporation of a tetrahydrofuran–methanol (1:2, v/v) solution over a period of 5 d.

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

View of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed lines indicate hydrogen bonds.

Figure 2

Packing diagram of the title compound, showing intermolecular hydrogen bonds (dashed lines).

Crystal data

C H EN O CH O	7 - 2
$C_{18}\Pi_{14}\Pi_{3}O_{2}C\Pi_{4}O$	L = 2 D = 1.270 Ma m ⁻³
$M_r = 555.50$	$D_x = 1.579$ Mg m
Triclinic, PI	Mo $K\alpha$ radiation
a = 9.071 (2) A	Cell parameters from 2286
b = 9.546 (2) A	reflections
c = 11.506 (3) Å	$\theta = 2.4 - 26.0^{\circ}$
$\alpha = 66.450 \ (4)^{\circ}$	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 71.709 \ (4)^{\circ}$	T = 293 (2) K
$\gamma = 74.490 \ (4)^{\circ}$	Column, colourless
V = 855.6 (3) Å ³	$0.42 \times 0.27 \times 0.13 \text{ mm}$

Data collection

Siemens SMART 1000 CCD area-	3286 independent reflections
detector diffractometer	2742 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.010$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.1^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 11$
$T_{\min} = 0.958, T_{\max} = 0.987$	$k = -6 \rightarrow 11$
4778 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0668P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.042$	+ 0.0967P]
$wR(F^2) = 0.122$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
3286 reflections	$\Delta \rho_{\rm max} = 0.14 \ {\rm e} \ {\rm \AA}^{-3}$
239 parameters	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ \AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1 Selected geometric parameters (Å, °).

F1-C18	1.3588 (18)	N2-C11	1.3451 (19)
O1-C8	1.3723 (16)	N2-N3	1.3819 (17)
O1-C10	1.4241 (16)	N3-C12	1.271 (2)
O2-C11	1.2167 (16)		
C8-O1-C10	115.37 (11)	C12-N3-N2	115.58 (12)
C11-N2-N3	118.17 (11)	O1-C10-C11	113.46 (12)

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdotsO1$	0.86	2.33	2.698 (2)	106
$N2 - H2A \cdots O3$	0.86	2.06	2.879 (2)	158
O3−H1O3···O1	0.90 (3)	2.50 (3)	3.011 (2)	116 (2)
O3−H1O3···N1	0.90 (3)	1.88 (3)	2.771 (2)	169 (2)

The solvent H atoms were located in a difference Fourier map, while the other H atoms were positioned geometrically. The hydroxy atom H1O3 was refined freely. All other H atoms were allowed to ride on their parent atoms, with C-H = 0.93-0.97 Å, N-H = 0.86 Å and $U_{iso}(H) = 1.2-1.5U_{eq}$ (parent atom).

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Programme for New Century Excellent Talents in Universities (No. NCET-04-0649) and the Project of Educational Administration of Shandong Province (No. J04B12).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Wen, Y.-H., Zhng, S.-S., Li, M.-J. & Li, X.-M. (2005). Acta Cryst. E61, o1807o1809.